现在的位置: 首页 > 技术文章 > 驱动开发 > 正文

Linux IIC总线驱动开发(一) — IIC 基础概念及驱动架构分析(转)

2017年11月30日 驱动开发 ⁄ 共 10416字 ⁄ 字号 Linux IIC总线驱动开发(一) — IIC 基础概念及驱动架构分析(转)已关闭评论

关于IIC 裸机开发请看 :《Exynos4412 裸机开发 —— IIC总线(转)》 ,下面回顾下 IIC 基础概念:

一、IIC 基础概念

IIC(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。IIC总线产生于在80年代,最初为音频和视频设备开发,如今主要在服务器管理中使用,其中包括单个组件状态的通信。例如管理员可对各个组件进行查询,以管理系统的配置或掌握组件的功能状态,如电源和系统风扇。可随时监控内存、硬盘、网络、系统温度等多个参数,增加了系统的安全性,方便了管理。

1、 IIC总线的特点

IIC总线最主要的优点是其简单性有效性。由于接口直接在组件之上,因此IIC总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互联成本。总线的长度可高达25英尺,并且能够以10Kbps的最大传输速率支持40个组件。IIC总线的另一个优点是,它支持多主控(multimastering), 其中任何能够进行发送和接收的设备都可以成为主总线。一个主控能够控制信号的传输和时钟频率。当然,在任何时间点上只能有一个主控。

2、IIC总线工作原理

a -- 总线构成

IIC总线是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据。在CPU与被控IC之间、IC与IC之间进行双向传送,最高传送速率100kbps。各种被控制电路均并联在这条总线上,但就像电话机一样只有拨通各自的号码才能工作,所以每个电路和模块都有唯一的地址,在信息的传输过程中,IIC总线上并接的每一模块电路既是主控器(或被控器),又是发送器(或接收器),这取决于它所要完成的功能。

CPU发出的控制信号分为地址码控制量两部分:

1) 地址码用来选址,即接通需要控制的电路,确定控制的种类;

2) 控制量决定该调整的类别(如对比度、亮度等)及需要调整的量。

这样,各控制电路虽然挂在同一条总线上,却彼此独立,互不相关。

b -- 信号类型

IIC总线在传送数据过程中共有四种类型信号:

开始信号SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据;

结束信号SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据;

数据传输信号在开始条件以后,时钟信号SCL的高电平周期期问,当数据线稳定时,数据线SDA的状态表示数据有效,即数据可以被读走,开始进行读操作。在时钟信号SCL的低电平周期期间,数据线上数据才允许改变。每位数据需要一个时钟脉冲。

应答信号接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲,表示已收到数据。CPU向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU接收到应答信号后,根据实际情况作出是否继续传递信号的判断。若未收到应答信号,由判断为受控单元出现故障。

目前有很多半导体集成电路上都集成了IIC接口。带有IIC接口的单片机有:CYGNAL的 C8051F0XX系列,PHILIPSP87LPC7XX系列,MICROCHIP的PIC16C6XX系列等。很多外围器件如存储器、监控芯片等也提供IIC接口。

3、总线基本操作

IIC规程运用主/从双向通讯。器件发送数据到总线上,则定义为发送器,器件接收数据则定义为接收器。主器件和从器件都可以工作于接收和发送状态。 总线必须由主器件(通常为微控制器)控制,主器件产生串行时钟(SCL)控制总线的传输方向,并产生起始和停止条件。SDA线上的数据状态仅在SCL为低电平的期间才能改变,SCL为高电平的期间,SDA状态的改变被用来表示起始和停止条件。

a -- 控制字节

在起始条件之后,必须是器件的控制字节,其中高四位为器件类型识别符(不同的芯片类型有不同的定义,EEPROM一般应为1010),接着三位为片选,最后一位为读写位,当为1时为读操作,为0时为写操作。

b -- 写操作

写操作分为字节写和页面写两种操作,对于页面写根据芯片的一次装载的字节不同有所不同。关于页面写的地址、应答和数据传送的时序。

c -- 读操作

读操作有三种基本操作:当前地址读、随机读和顺序读。图4给出的是顺序读的时序图。应当注意的是:最后一个读操作的第9个时钟周期不是“不关心”。为了结束读操作,主机必须在第9个周期间发出停止条件或者在第9个时钟周期内保持SDA为高电平、然后发出停止条件。

d -- 总线仲裁

主机只能在总线空闲的时候启动传输。两个或多个主机可能在起始条件的最小持续内产生一个起始条件,结果在总线上产生一个规定的起始条件。

当SCL线是高电平时,仲裁在SDA线发生:这样,在其他主机发送低电平时,发送高电平的主机将断开它的数据输出级,因为总线上的电平和它自己的电平不同。

仲裁可以持续多位。从地址位开始,同一个器件的话接着就是数据位(如果主机-发送器),或者比较相应位(如果主机-接收器)。IIC总线的地址和数据信息由赢得仲裁的主机决定,在这个过程中不会丢失信息。

仲裁不能在下面情况之间进行:

1)重复起始条件和数据位;

2)停止条件和数据位;

3)重复起始条件和停止条件。

4、特性总结

IIC肯定是2线的(不算地线)IIC协议确实很科学,比3/4线的SPI要好,当然线多通讯速率相对就快了

IIC的原则是

a -- 在SCL=1(高电平)时,SDA千万别忽悠!!!否则,SDA下跳则"判罚"为"起始信号S",SDA上跳则"判罚"为"停止信号P".

b -- 在SCL=0(低电平)时,SDA随便忽悠!!!(可别忽悠过火到SCL跳高)

c -- 每个字节后应该由对方回送一个应答信号ACK做为对方在线的标志.非应答信号一般在所有字节的最后一个字节后.一般要由双方协议签定.

d -- SCL必须由主机发送,否则天下大乱

e -- 首字节是"片选信号",即7位从机地址加1位方向(读写)控制.从机收到(听到)自己的地址才能发送应答信号(必须应答!!!)表示自己在线.其他地址的从机不允许忽悠!!!(当然群呼可以忽悠但只能听不许说话)

f -- 读写是站在主机的立场上定义的."读"是主机接收从机数据,"写"是主机发送数据给从机.

g-- 重复位主要用于主机从发送模式到接收模式的转换"信号",由于只有2线,所以收发转换肯定要比SPI复杂,因为SPI可用不同的边沿来收发数据,而IIC不行.

h -- 在硬件IIC模块,特别是MCU/ARM/DSP等每个阶段都会得到一个准确的状态码,根据这个状态码可以很容易知道现在在什么状态和什么出错信息.

i -- 7位IIC总线可以挂接127个不同地址的IIC设备,0号"设备"作为群呼地址.10位IIC总线可以挂接更多的10位IIC设备. 

 

二、 Linux下IIC驱动架构

Linux定义了系统的IIC驱动体系结构,在Linux系统中,IIC驱动由3部分组成,即

IIC核心

IIC总线驱动

IIC设备驱动

这3部分相互协作,形成了非常通用、可适应性很强的IIC框架。

linux i2c

linux i2c

上图完整的描述了linux i2c驱动架构,虽然I2C硬件体系结构比较简单,但是i2c体系结构在linux中的实现却相当复杂。

那么我们如何编写特定i2c接口器件的驱动程序?就是说上述架构中的那些部分需要我们完成,而哪些是linux内核已经完善的或者是芯片提供商已经提供的?

1、架构层次分类

第一层:提供i2c adapter的硬件驱动,探测、初始化i2c adapter(如申请i2c的io地址和中断号),驱动soc控制的i2c adapter在硬件上产生信号(start、stop、ack)以及处理i2c中断。覆盖图中的硬件实现层

第二层:提供i2c adapter的algorithm,用具体适配器的xxx_xferf()函数来填充i2c_algorithm的master_xfer函数指针,并把赋值后的i2c_algorithm再赋值给i2c_adapter的algo指针。覆盖图中的访问抽象层、i2c核心层

 第三层:实现i2c设备驱动中的i2c_driver接口,用具体的i2c device设备的attach_adapter()、detach_adapter()方法赋值给i2c_driver的成员函数指针。实现设备device与总线(或者叫adapter)的挂接覆盖图中的driver驱动层

第四层:实现i2c设备所对应的具体device的驱动,i2c_driver只是实现设备与总线的挂接,而挂接在总线上的设备则是千差万别的,所以要实现具体设备device的write()、read()、ioctl()等方法,赋值给file_operations,然后注册字符设备(多数是字符设备)。覆盖图中的driver驱动层

第一层和第二层又叫i2c总线驱动(bus),第三第四属于i2c设备驱动(device driver)

在linux驱动架构中,几乎不需要驱动开发人员再添加bus,因为linux内核几乎集成所有总线bus,如usb、pci、i2c等等。并且总线bus中的(与特定硬件相关的代码)已由芯片提供商编写完成,例如三星的s3c-2440平台i2c总线bus为/drivers/i2c/buses/i2c-s3c2410.c

第三第四层与特定device相干的就需要驱动工程师来实现了。

2、Linux下I2C驱动体系结构三部分详细分析

a -- IIC核心

 IIC 核心提供了IIC总线驱动和设备驱动的注册、注销方法,IIC通信方法(即“algorithm”,笔者认为直译为“运算方法”并不合适,为免引起误解, 下文将直接使用“algorithm”)上层的、与具体适配器无关的代码以及探测设备、检测设备地址的上层代码等。

在我们的Linux驱动的i2c文件夹下有algos,busses,chips三个文件夹,另外还有i2c-core.ci2c-dev.c两个文件。

i2c-core.c文件实现了I2C core框架,是Linux内核用来维护和管理的I2C的核心部分,其中维护了两个静态的List,分别记录系统中的I2C driver结构和I2C adapter结构。I2C core提供接口函数,允许一个I2C adatper,I2C driver和I2C client初始化时在I2C core中进行注册,以及退出时进行注销。同时还提供了I2C总线读写访问的一般接口,主要应用在I2C设备驱动中。

b -- IIC总线驱动

IIC总线驱动是对IIC硬件体系结构中适配器端的实现,适配器可由CPU控制,甚至直接集成在CPU内部。总线驱动的职责,是为系统中每个I2C总线增加相应的读写方法。但是总线驱动本身并不会进行任何的通讯,它只是存在那里,等待设备驱动调用其函数。

 IIC总线驱动主要包含了IIC适配器数据结构i2c_adapterIIC适配器的algorithm数据结构i2c_algorithm控制IIC适配器产生通信信号的函数。经由IIC总线驱动的代码,我们可以控制IIC适配器以主控方式产生开始位、停止位、读写周期,以及以从设备方式被读写、产生ACK等。

Busses文件夹下的i2c-mpc.c文件实现了PowerPC下I2C总线适配器驱动,定义描述了具体的I2C总线适配器的i2c_adapter数据结构,实现比较底层的对I2C总线访问的具体方法。I2Cadapter 构造一个对I2Ccore层接口的数据结构,并通过接口函数向I2Ccore注册一个控制器。I2Cadapter主要实现对I2C总线访问的算法,iic_xfer() 函数就是I2Cadapter底层对I2C总线读写方法的实现。同时I2Cadpter 中还实现了对I2C控制器中断的处理函数。

c -- IIC设备驱动

IIC设备驱动是对IIC硬件体系结构中设备端的实现,设备一般挂接在受CPU控制的IIC适配器上,通过IIC适配器与CPU交换数据。设备驱动则是与挂在I2C总线上的具体的设备通讯的驱动。通过I2C总线驱动提供的函数,设备驱动可以忽略不同总线控制器的差异,不考虑其实现细节地与硬件设备通讯。

IIC设备驱动主要包含了数据结构i2c_driver和i2c_client,我们需要根据具体设备实现其中的成员函数。

i2c-dev.c文件中实现了I2Cdriver,提供了一个通用的I2C设备的驱动程序,实现了字符类型设备的访问接口,实现了对用户应用层的接口,提供用户程序访问I2C设备的接口,包括实现open,release,read,write以及最重要的ioctl等标准文件操作的接口函数。我们可以通过open函数打开 I2C的设备文件,通过ioctl函数设定要访问从设备的地址,然后就可以通过 read和write函数完成对I2C设备的读写操作。

通过I2Cdriver提供的通用方法可以访问任何一个I2C的设备,但是其中实现的read,write及ioctl等功能完全是基于一般设备的实现,所有的操作数据都是基于字节流,没有明确的格式和意义。为了更方便和有效地使用I2C设备,我们可以为一个具体的I2C设备开发特定的I2C设备驱动程序,在驱动中完成对特定的数据格式的解释以及实现一些专用的功能。

3、重要的结构体

因为IIC设备种类太多,如果每一个IIC设备写一个驱动程序,那么显得内核非常大。不符合软件工程代码复用,所以对其层次话:

这里简单的将IIC设备驱动分为设备层总线层理解这两个层次的重点是理解4个数据结构,这4个数据结构是

i2c_driver

i2c_client

i2c_algorithm

i2c_adapter

i2c_driver、i2c_client属于设备层;i2c_algorithm、i2c_adapter属于总线型。如下图:

设备层关系到实际的IIC设备,总线层包括CPU中的IIC总线控制器和控制总线通信的方法。值得注意的是:一个系统中可能有很多个总线层,也就是包含多个总线控制器;也可能有多个设备层,包含不同的IIC设备。

iic-struct

iic-struct

由IIC总线规范可知,IIC总线由两条物理线路组成,这两条物理线路是SDA和SCL。只要连接到SDA和SCL总线上的设备都可以叫做IIC设备。

a -- i2c_client 

一个IIC设备由i2c_client数据结构进行描述:


struct i2c_client
{
unsigned short flags;   //标志位
unsigned short addr;               //设备的地址,低7位为芯片地址
char name[I2C_NAME_SIZE];           //设备的名称,最大为20个字节
struct i2c_adapter *adapter;           //依附的适配器i2c_adapter,适配器指明所属的总线
struct i2c_driver *driver;             //指向设备对应的驱动程序
struct device dev;                 //设备结构体
int irq;                       //设备申请的中断号
struct list_head list;                //连接到总线上的所有设备
struct list_head   detected;           //已经被发现的设备链表
struct completion  released;           //是否已经释放的完成量
};

设备结构体i2c_client中addr的低8位表示设备地址。设备地址由读写位、器件类型和自定义地址组成,如下图:

iic-addr

iic-addr

第7位是R/W位,0表示写,2表示读,所以I2C设备通常有两个地址,即读地址和写地址;

类型器件由中间4位组成,这是由半导体公司生产的时候就已经固化了;

自定义类型由低3位组成。由用户自己设置;

 IIC设备还有一些重要的注意事项:

1、i2c_client数据结构是描述IIC设备的“模板”,驱动程序的设备结构中应包含该结构;

2、adapter指向设备连接的总线适配器,系统可能有多个总线适配器。内核中静态指针数组adapters记录所有已经注册的总线适配器设备;

3、driver是指向设备驱动程序,这个驱动程序是在系统检测到设备存在时赋值的;

b -- IIC设备驱动     i2c_driver


struct i2c_driver
{
int id; //驱动标识ID
unsigned int class; //驱动的类型
int (*attach_adapter)(struct i2c_adapter *); //当检测到适配器时调用的函数
int (*detach_adapter)(struct i2c_adapter*); //卸载适配器时调用的函数
int (*detach_client)(struct i2c_client *) __deprecated; //卸载设备时调用的函数

//以下是一种新类型驱动需要的函数,这些函数支持IIC设备动态插入和拔出。如果不想支持只实现上面3个。要不实现上面3个。要么实现下面5个。不能同时定义
int (*probe)(struct i2c_client *,const struct i2c_device_id *); //新类型设备探测函数
int (*remove)(struct i2c_client *); //新类型设备的移除函数
void (*shutdown)(struct i2c_client *); //关闭IIC设备
int (*suspend)(struct i2c_client *,pm_messge_t mesg); //挂起IIC设备
int (*resume)(struct i2c_client *); //恢复IIC设备
int (*command)(struct i2c_client *client,unsigned int cmd,void *arg); //使用命令使设备完成特殊的功能。类似ioctl()函数
struct devcie_driver driver; //设备驱动结构体
const struct i2c_device_id *id_table; //设备ID表
int (*detect)(struct i2c_client *,int kind,struct i2c_board_info *); //自动探测设备的回调函数

const struct i2c_client_address_data *address_data; //设备所在的地址范围
struct list_head clients; //指向驱动支持的设备
};

结构体i2c_driver和i2c_client的关系较为简单,其中i2c_driver表示一个IIC设备驱动,i2c_client表示一个IIC设备。关系如下图:

iic-drv-clt

iic-drv-clt

c -- i2c_adapter

IIC总线适配器就是一个IIC总线控制器,在物理上连接若干个IIC设备。IIC总线适配器本质上是一个物理设备,其主要功能是完成IIC总线控制器相关的数据通信:


struct i2c_adapter
{
struct module *owner; //模块计数
unsigned int id; //alogorithm的类型,定义于i2c_id.h中
unsigned int class; //允许探测的驱动类型
const struct i2c_algorithm *algo; //指向适配器的驱动程序
void *algo_data; //指向适配器的私有数据,根据不同的情况使用方法不同
int (*client_register)(struct i2c_client *); //设备client注册时调用
int (*client_unregister(struct i2c_client *); //设备client注销时调用
u8 level;
struct mutex bus_lock; //对总线进行操作时,将获得总线锁
struct mutex clist_lock ; //链表操作的互斥锁
int timeout; //超时
int retries; //重试次数
struct device dev; //指向 适配器的设备结构体
int nr ;
struct list_head clients; //连接总线上的设备的链表
char name[48]; //适配器名称
struct completion dev_released; //用于同步的完成量
};

d -- i2c_algorithm

每一个适配器对应一个驱动程序,该驱动程序描述了适配器与设备之间的通信方法:


struct i2c_algorithm
{
int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msg, int num); //传输函数指针,指向实现IIC总线通信协议的函数,用来确定适配器支持那些传输类型
int (*smbus_xfer)(struct i2c_adapter *adap, u16 addr, unsigned short flags, char read_write, u8 command, int size, union i2c_smbus_data *data); //smbus方式传输函数指针,指向实现SMBus总线通信协议的函数。SMBus和IIC之间可以通过软件方式兼容,所以这里提供了一个函数,但是一般都赋值为NULL
u32 (*functionality)(struct i2c_adapter *); //返回适配器支持的功能

};

IIC设备驱动程序大致可以分为设备层和总线层。设备层包括一个重要的数据结构,i2c_client。总线层包括两个重要的数据结构,分别是i2c_adapter和i2c_algorithm。一个i2c_algorithm结构表示适配器对应的传输数据方法。3个数据结构关系:

 iic-dev-bus


iic-dev-bus

IIC设备层次结构较为简单,但是写IIC设备驱动程序却相当复杂。

IIC设备驱动程序的步骤:

iic-dev-drv

iic-dev-drv

 

4、各结构体的作用与它们之间的关系

a -- i2c_adapter与i2c_algorithm 

i2c_adapter对应与物理上的一个适配器,而i2c_algorithm对应一套通信方法,一个i2c适配器需要i2c_algorithm中提供的(i2c_algorithm中的又是更下层与硬件相关的代码提供)通信函数来控制适配器上产生特定的访问周期。缺少i2c_algorithm的i2c_adapter什么也做不了,因此i2c_adapter中包含其使用i2c_algorithm的指针。

i2c_algorithm中的关键函数master_xfer()用于产生i2c访问周期需要的start stop ack信号,以i2c_msg(即i2c消息)为单位发送和接收通信数据。

i2c_msg也非常关键,调用驱动中的发送接收函数需要填充该结构体.


struct i2c_msg {
__u16 addr; /* slave address */
__u16 flags;
__u16 len; /* msg length */
__u8 *buf; /* pointer to msg data */
};

b --i2c_driver和i2c_client

i2c_driver对应一套驱动方法,其主要函数是attach_adapter()和detach_client()

i2c_client对应真实的i2c物理设备device,每个i2c设备都需要一个i2c_client来描述

i2c_driver与i2c_client的关系是一对多。一个i2c_driver上可以支持多个同等类型的i2c_client.

c -- i2c_adapter和i2c_client

i2c_adapter和i2c_client的关系与i2c硬件体系中适配器和设备的关系一致,即i2c_client依附于i2c_adapter,由于一个适配器上可以连接多个i2c设备,所以i2c_adapter中包含依附于它的i2c_client的链表。

从i2c驱动架构图中可以看出,linux内核对i2c架构抽象了一个叫核心层core的中间件,它分离了设备驱动device driver和硬件控制的实现细节(如操作i2c的寄存器),core层不但为上面的设备驱动提供封装后的内核注册函数,而且还为下面的硬件事件提供注册接口(也就是i2c总线注册接口),可以说core层起到了承上启下的作用。

 

转自:http://blog.csdn.net/zqixiao_09/article/details/50916916

×